
Conservation of linear momentum



Forces acting on a differential element



Double subscript notation for stresses.



Surface forces in the x direction acting on a fluid element.



Equations of motion

x-direction

Local

Accel.
Convective

Acceleration
Gravity Surface

forces

y-direction

z-direction

Newton’s 2nd law: where

Note: these are general equations of motion for solids and fluids

𝜌𝑔𝑧 +
𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
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𝜕𝜎𝑧𝑧

𝜕𝑧
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𝜕𝑤

𝜕𝑦
+ w

𝜕𝑤

𝜕𝑧
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𝜌𝑔𝑦 +
𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑧𝑦

𝜕𝑧
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𝜕𝑧
)

𝜌𝑔𝑥 +
𝜕𝜎𝑥𝑥

𝜕𝑥
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𝜕𝜏𝑦𝑥

𝜕𝑦
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𝜕𝜏𝑧𝑥

𝜕𝑧
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𝜕𝑡
+ u

𝜕𝑢
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𝜕𝑧
)



Inviscid flow



Euler’s equations for inviscid flow

Leonhard Euler

(1707-1783)

For inviscid flow:

So, the general equations of motion become:

Or, in vector notation:

𝜌𝑔
𝑥
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𝜕𝑝

𝜕𝑥
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𝜕𝑢

𝜕𝑡
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𝜕𝑢

𝜕𝑥
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𝜕𝑢

𝜕𝑦
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𝜕𝑢

𝜕𝑧
)

𝜌𝑔𝑦 −
𝜕𝑝

𝜕𝑦
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𝜕𝑣

𝜕𝑡
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𝜕𝑣

𝜕𝑥
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𝜕𝑣

𝜕𝑦
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𝜕𝑡
+ u

𝜕𝑤
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)



Irrotational flow



Examples of rotational and irrotational flow

Flow around bodies

Flow through channels



The Velocity Potential



Stream Function and Velocity Potential

Relation to V: Derives from: Applies to:

Stream function, y Continuity 2-D flows

Velocity potential, f Irrotationality 3-D flows



Potential flow



Velocity potential in cylindrical coordinates



Example on potential flow

………………………





Viscous flow

x-direction

Local

Accel.

Convective

Acceleration
Gravity

Surface

forces

y-direction

z-direction

Equations of motion in cartesian coordinates:

We need a relationship between stresses (σij) and velocities (u, v and w)

The equations of motion include stresses (σij) and velocities (u, v and w)

𝜌(
𝜕𝑢

𝜕𝑡
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𝜕𝑥
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𝜕𝜏𝑧𝑥
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𝜕𝑣

𝜕𝑡
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𝜕𝑧
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)



Stress-deformation relationships

Normal stresses:

Shearing stresses:

For Newtonian, incompressible fluids, stresses are linearly related to deformations



Eliminate stresses

𝜕𝜎𝑥𝑥

𝜕𝑥
= −

𝜕𝑝

𝜕𝑥
+2𝜇

𝜕2𝑢

𝜕𝑥2

𝜕𝜏𝑦𝑥

𝜕𝑦
= 𝜇

𝜕2𝑢

𝜕𝑦2
+ 𝜇

𝜕2𝑣

𝜕𝑥𝜕𝑦

𝜕𝜏𝑧𝑥

𝜕𝑧
= 𝜇

𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝜇

𝜕2𝑢

𝜕𝑧2

𝜎𝑥𝑥 = −𝑝+2𝜇
𝜕𝑢

𝜕𝑥

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
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𝜏𝑧𝑥 = 𝜏𝑥𝑧 = 𝜇(
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

𝜌𝑔𝑥 +
𝜕𝜎𝑥𝑥

𝜕𝑥
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𝜕𝜏𝑦𝑥

𝜕𝑦
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𝜕𝑝
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+2𝜇
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+ 𝜇

𝜕𝑤
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+ 𝜇
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𝜕𝑧2
+ 𝜇(

𝜕2𝑢

𝜕𝑥2
+

𝜕𝑣

𝜕𝑥𝜕𝑦
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𝜕𝑥
+

𝜕𝑣
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=0 : continuity   

equation

The right hand term of the equation becomes:

In x-direction: 𝜌(
𝜕𝑢

𝜕𝑡
+ u

𝜕𝑢

𝜕𝑥
+ v

𝜕𝑢

𝜕𝑦
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𝜕𝑧
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𝜕𝑥
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𝜕𝑦
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𝜕𝜏𝑧𝑥

𝜕𝑧
)



Navier-Stokes equations (cartesian)

x-direction:

Local

Accel.

Convective

Acceleration

P
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ra
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Viscous

forces

y-direction:

z-direction:
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a
ti
o
n
s

+

Continuity equation

𝜌(
𝜕𝑢

𝜕𝑡
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𝜕𝑢

𝜕𝑥
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𝜕𝑢

𝜕𝑦
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𝜕𝑢

𝜕𝑧
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𝜕𝑝
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𝜕𝑣

𝜕𝑦
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𝜕𝑤

𝜕𝑡
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𝜕𝑤

𝜕𝑥
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𝜕𝑤

𝜕𝑦
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𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧+ 𝜇

𝜕2𝑤

𝜕𝑥2
+
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𝜕𝑦2
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𝜕2𝑤

𝜕𝑧2


