Conservation of linear momentum
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Forces acting on a differential element
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Double subscript notation for stresses.
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Surface forces in the x direction acting on a fluid element.
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Newton’s 2nd law:

x-direction

y-direction

z-direction

Note: these are general equations of motion for solids and fluids

Equations of motion
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Inviscid flow
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Euler’s equations for inviscid flow

For inviscid flow: o.=—-p and rj}_:(}

So, the general equations of motion become:
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Irrotational flow
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Examples of rotational and irrotational flow

Flow around bodies .
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The Velocity Potential
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Stream Function and Velocity Potential

Relation to V: Derives from: Applies to:
Stream function, vy u= % Continuity 2-D flows
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Potential flow
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Velocity potential in cylindrical coordinates
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Example on potential flow
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Viscous flow

Equations of motion in cartesian coordinates:
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The equations of motion include stresses (aj) and velocities (u, v and w)

We need arelationship between stresses (oij) and velocities (u, v and w)



Stress-deformation relationships

For Newtonian, incompressible fluids, stresses are linearly related to deformations
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Eliminate stresses
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Navier-Stokes equations (cartesian)
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Momentum equations

Continuity equation



